
a.a 2017/2018 Prof.ssa G. Tortora

BASI DI DATI 2
TUTORIAL. PENTAHO SOLUTIONS:

ETL – IL TOOL KETTLE
SCHEMA WORKBENCH
BI SERVER & JPIVOT

Three level architecture

Dati operazionali

Dati esterni
Livello delle sorgenti

Livello del data warehouse

Livello di alimentazione

Livello di analisi

Data mart

Strumenti
OLAP

Workstation

Workstation
Workstation

Workstation

Strumenti di
reportistica

Strumenti di
data mining

Strumenti per l’analisi
what-if

Dati riconciliati
Meta - dati

Strumenti ETL

Data Warehouse

Caricamento

Generic data warehouse architecture

Data warehouse with Mondrian

¨ SQL Database: MySQL
¨ OLAP Engine: Mondrian ROLAP
¨ Analisys front end: JPivot

Pentaho OLAP
components

Tools

¨ JPivot analysis front end:

¤ JPivot is a Java-based analysis tool that serves as the actual

user interface for working with OLAP cubes.

¨ Mondrian ROLAP engine:

¤ The engine receives MDX (Multi Dimensional EXpressions)

queries from front-end tools such as JPivot, and responds by

sending a multidimensional result-set.

¨ Schema Workbench:

¤ This is the visual tool for designing and testing Mondrian

cube schemas. Mondrian uses these cube schemas to

interpret MDX and translate it into SQL queries to retrieve

the data from an RDBMS.

¨ Data Integration:

¤ The desktop tool (Kettle) for building ETL jobs and

transformations.

Schema

¨ A central structure is the schema.
¤ The schema is essentially an XML document that

describes one or more multidimensional cubes.
¤ The cubes also describe the mapping of the cube’s

dimensions and measures to tables and columns in
a relational database.

¤ To Mondrian, the schema is key in translating the
MDX query to SQL queries.

Schema Design Tools

¨ The multidimensional model, consisting of
dimensions, hierarchies, and measures, is
created first and the relational model is mapped
into the schema.

¨ Pentaho Schema Workbench offers a graphical
user interface to create Mondrian schemas.
¤ In addition, Pentaho Schema Workbench can

publish schemas to the Pentaho Server, which then
stores them in the solution repository.

¤ Once stored in the solution repository, the schemas
can be used by the server’s Mondrian engine as a
back end for OLAP services.

Data warehouse in practice (with Mondrian)

RDBMS
(MySQL)

Data Integration
(Kettle)

Schema Workbench
(Schema Design)

ROLAP Engine
(Mondrian Server)

Jpivot
(Servlet)

Schema
File

MDX
Multidimensional
Result

HTTP
RequestHTML

Response

SQL

Relational Result

Metadata

Metadata

Data Extraction

Data
Transformation/Load

SQL

Reverse Engineering

Data
Reconciliation

DFM Creation

ROLAP Modeling
Metadata

Browser

Introduction

¨ Pentaho Data Integration (PDI, also called Kettle) is the
component of Pentaho responsible for the Extract,
Transform and Load (ETL) processes.

¨ Though ETL tools are most frequently used in data
warehouses environments, Kettle can also be used for
other purposes:
¤ Migrating data between applications or databases
¤ Exporting data from databases to flat files
¤ Loading data massively into databases
¤ Data cleansing
¤ Integrating applications

¨ Kettle is easy to use.
¨ Every process is created with a graphical tool where you

specify what to do without writing code to indicate how to
do it.

What is Spoon?

¨ Kettle is an acronym for "Kettle E.T.T.L. Environment."
Kettle is designed to help you the Extraction,
Transformation, Transportation and Loading of data.

¨ Spoon is a graphical user interface that allows you to
design transformations and jobs that can be run with
the Kettle tools — Pan and Kitchen.

¨ Pan is a data transformation engine that performs a
multitude of functions such as reading, manipulating,
and writing data to and from various data sources.

¨ Kitchen is a program that executes jobs designed by
Spoon in XML or in a database repository.
¤ Jobs are usually scheduled in batch mode to be run

automatically at regular intervals.

Kettle UI

ETL by Example

¨ Kettle can be used as a standalone application,
or it can be used as part of the larger Pentaho
Suite.

¨ As an ETL tool, it is the most popular open
source tool available.

¨ Kettle supports a vast array of input and output
formats, including text files, data sheets, and
commercial and free database engines.

¨ Through a simple "Hello world" example, we will show
how easy it is to work with Kettle and get you ready to
make your own more complex transformations.

Installing Kettle

¨ Follow the instructions below to install Spoon:
1. You can download Kettle (4.1 or higher)

from http://kettle.pentaho.com/.
2. Install the Sun Microsystems Java Runtime

Environment version 1.5 or higher.
3. Unzip the binary distribution zip-file in a directory

of your choice.

http://kettle.pentaho.com/

Repository and files

¨ In Spoon, you build Jobs and Transformations.
¨ Kettle offers two methods to save them:

¤ Database repository
¤ Files

¨ If you choose the repository method, the repository
has to be created the first time you execute Spoon.

¨ If you choose the files method, the Jobs are saved in
files with the kjb extension, and the Transformations
are in files with the ktr extension.
¤ We will work with the second method.

Starting Spoon

¨ Start Spoon by executing spoon.bat on
Windows, or spoon.sh on Unix-like operating
systems.

¨ As soon as Spoon starts, a dialog window
appears asking for the repository connection
data…

¨ Go to the Tools menu and click Options....
¤ A window will come up that enables you to change

various general and visual characteristics.
¤ If you change something, it will be necessary to

restart Spoon in order to see the changes applied.

Hello World Example

¨ Although this will be a simple example, it will
introduce you to some of the fundamentals of
Kettle:
¤ Working with the Spoon tool
¤ Transformations
¤ Steps and Hops
¤ Predefined variables
¤ Previewing and Executing from Spoon
¤ Executing Transformations from a terminal window

with the Pan tool.

Overview

¨ Let's suppose that you have a CSV file containing
a list of people, and want to create an XML file
containing greetings for each of them.

¨ If this were the content of your CSV file:

Overview (2)

¨ This would be the output in your XML file:

Overview (3)

¨ The creation of the file with greetings from the flat
file will be the goal for your first Transformation.

¨ A Transformation is made of Steps linked by
Hops.

¨ These Steps and Hops form paths through which
data flows:
¤ Therefore it's said that a Transformation is data-

flow oriented.

Preparing the environment

¨ Before starting a Transformation, create
a Tutorial folder in the installation folder or some
other convenient place.

¨ There you'll save all the files for this tutorial.
¨ Then create a CSV file like the one shown above,

and save it in the Tutorial folder as list.csv.

Transformation walkthrough

¨ The proposed task will be accomplished in three
subtasks:
1. Creating the Transformation
2. Constructing the skeleton of the Transformation

using Steps and Hops
3. Configuring the Steps in order to specify their

behavior

Creating the Transformation

1. Click New, then select Transformation.
Alternatively you can go to the File menu, then
select New, then Transformation.

¤ You can also just press Ctrl-N.
2. In the View navigator, click Transformation 1, then

click Settings. Or right click the diagram and
click Transformation Settings.

¤ Or use the Ctrl+T shortcut.
3. A window appears where you can specify

Transformation properties. In this case, just write a
name and a description, then click Save.

4. Save the Transformation in the Tutorial folder with
the name hello. This will create a hello.ktr file.

Constructing the skeleton of the Transformation
using Steps and Hops
¨ A Step is the minimal unit inside a Transformation.
¨ A wide variety of Steps are available, grouped into categories like

Input and Output, among others.
¨ Each Step is designed to accomplish a specific function, such as

reading a parameter or normalizing a dataset.
¨ A Hop is a graphical representation of data flowing between two

Steps, with an origin and a destination.
¨ The data that flows through that Hop constitutes the Output Data of

the origin Step, and the Input Data of the destination Step.
¨ A Hop has only one origin and one destination, but more than one

Hop could leave a Step.
¤ When that happens, the Output Data can be copied or distributed to every

destination.
¨ Likewise, more than one Hop can reach a Step.

¤ In those instances, the Step has to have the ability to merge the Input from
the different Steps in order to create the Output.

The Transformation

¨ A Transformation has to do the
following:
1. Read the CSV file

2. Build the greetings

3. Save the greetings in the XML
file

¨ For each of these items you'll
use a different Step, according to
the next diagram:

The Transformation (2)

¨ Here's how to start the Transformation:
1. To the left of the workspace is the Steps Palette.

Select the Input category.
2. Drag the CSV file onto the workspace on the

right.
3. Select the Scripting category.
4. Drag the Modified JavaScript Value icon to the

workspace.
5. Select the Output category.
6. Drag the XML Output icon to the workspace.

The Transformation (3)

¨ Now you will link the CSV file input with the
Modified Java Script Value by creating a Hop:
1. Select the first Step.
2. Hold the Shift key and drag the icon onto the

second Step.
3. Link the Modified Java Script Value with the XML

Output via this same process.

Specifying Step behavior

¨ Every Step has a configuration window.
¨ These windows vary according to the functionality

of the Steps and the category to which they
belong.
¤ Step Name is always a representative name inside

the Transformation - this doesn't change among
Step configurations.

¤ Step Description allows you to clarify the purpose
of the Step.

The configuration window

Configuring the CSV file input Step

1. Double-click on the CSV file input Step.
2. The configuration window belonging to this kind of

Step will appear. Here you'll indicate the location,
format and content of the input file.

3. Replace the default name with one that is more
representative of this Step's function. In this case,
type in name list.

4. In the Filename field, type the name and location
of the input file.

Note

¨ It is possible to use variables as well as plain text in a
field.

¨ A variable can be written manually as ${variable_name}
or selected from the variable window, which you can
access by pressing Ctrl-Spacebar.

¨ This window shows both predefined and user-defined
variables. Select:

${Internal.Transformation.Filename.Directory}
¨ Then type a slash and the name of the file you created:

${Internal.Transformation.Filename.Directory}/list.csv
¨ At runtime the variable will be replaced by its value, which

will be the path where the Transformation was saved. The
Transformation will search the file list.csv in that location.

Configuring the CSV file input Step (2)

5. Click Get Fields to add the list of column names
of the input file to the grid. By default, the Step
assumes that the file has headers (the Header
row present checkbox is checked).

6. Switch lazy conversion off. When enables, lazy
conversion avoids unnecessary data type
conversions and can result in a significant
performance improvements.

7. Click Preview to ensure that the file will be read
as expected. A window showing data from the file
will appear.

8. Click OK to finish defining the Step CSV file input.

Configuring the Modified JavaScript Value
Step

1. Double-click on the Modified JavaScript
Value Step.

2. The Step configuration window will appear, that
allows you to write JavaScript code.

3. Name this Step Greetings.
4. The main area of the configuration window is for

coding. To the left, there is a tree with a set of
available functions that you can use in the code.
Write the following code:
var msg = 'Hello, ' + name + "!";

Configuring the Modified JavaScript Value
Step (2)

5. At the bottom you can type any variable created in the
code. In this case, you have created a variable
named msg. Since you need to send this message to the
output file, you have to write the variable name in the grid.

6. Click OK to finish configuring Step Modified Script Value.
7. Select the Step you just configured. In order to check that

the new field will leave this Step, you will now see the Input
and Output Fields.

8. Right-click the Step to bring up a context menu.
9. Select Show Input Fields. You'll see that the Input Fields

are last_name and name, which come from the CSV file
input Step.

10. Select Show Output Fields. You'll see that not only do
you have the existing fields, but also the new msg field.

Note

¨ There are Steps that simply transform the input
data. In this case, the input and output fields are
usually the same.

¨ There are Steps, however, that add fields to the
Output - Calculator, for example.

¨ There are other Steps that filter or combine data
causing that the Output has less fields that the
Input - Group by, for example.

Configuring the XML Output Step

1. Double-click the XML Output Step. The configuration
window for this kind of Step will appear. Here you're
going to set the name and location of the output file,
and establish which of the fields you want to include.
You may include all or some of the fields that reach
the Step.

2. Name the Step File with Greetings.
3. In the File box write:
${Internal.Transformation.Filename.Directory}/Hello.xml
4. Click Get Fields to fill the grid with the three input

fields, so delete name and last_name.
¨ Save the Transformation again.

How does it work?

¨ When you execute a Transformation, almost all Steps are
executed simultaneously.
¤ The Transformation executes asynchronously; the rows of data

flow through the Steps at their own pace.
¤ Each processed row flows to the next Step without waiting for the

others. In real-world Transformations, forgetting this characteristic
can be a significant source of unexpected results.

¨ At this point, Hello World is almost completely configured.
¨ A Transformation reads the input file, then creates messages

for each row via the JavaScript code, and then the message is
sent to the output file.

¨ This is a small example with very few rows of names, so it is
difficult to notice the asynchronous execution in action.

¨ Keep in mind, however, that it's possible that at the same time
a name is being written in the output file, another is leaving the
first Step of the Transformation.

Executing a transformation

Verify, preview and execute

¨ Before executing the Transformation, check that
everything is properly configured by
clicking Verify.

¨ Spoon will verify that the Transformation is
syntactically correct, and look for unreachable
Steps and nonexistent connections.
¤ If everything is in order (it should be if you followed

the instructions), you are ready to preview the
output.

Preview and Execute

1. Select the JavaScript Step and then click Preview
button.

2. As you can see, Spoon suggests that you preview the
selected Step. Click QuickLaunch. After that, you will
see a window with a sample of the output of the
JavaScript Step.

n If the output is what you expected, you're ready to execute
the Transformation.

3. Click Run.
4. Spoon will show a window where you can set, among

other information, the parameters for the execution
and the logging level.

5. Click Launch. A new window tab will appear in the
Job window. This is the log tab, which contains a log
of the current execution.

Step metrics

¨ In the step metric section the executed operations
for each Step of the Transformation are provided.

¨ In particular, pay attention to these:
¤Read: the number of rows coming from previous

Steps.
¤Written: the number of rows leaving from this Step

toward the next.
¤ Input: the number of rows read from a file or table.
¤Output: the number of rows written to a file or

table.
¤ Errors: errors (in red) in the execution.

Log tab

¨ In the log tab you will see the execution step by
step.
¤ The detail will depend on the log level established.
¤ If you pay attention to this detail, you will see the

asynchronicity of the execution.
¤ The last line of the text will be:

Spoon - The transformation has finished!!

¨ If there weren't error messages in the text, open
the newly generated Hello.xml file and check its
content.

Pan

¨ Pan allows you to execute Transformations from a
terminal window.
¤ The script is pan.bat on Windows, or pan.sh on other

platforms, and it's located in the installation folder.
¤ If you run the script without any options, you'll see a

description pan with a list of available options.
¨ To execute your Transformation, try the simplest

command:
pan /file <Jobs_path>/Hello.ktr /norep
¤ /norep is a command to ask Spoon not to connect to

the repository.
¤ /file precedes the name of the file that contains the

Transformation.
¤ <Jobs_path> is the full path to the Tutorial folder.

Refining Hello World

¨ Now that the Transformation has been created
and executed, the next task is enhancing it.

¨ Exercise: execute the Transformation you created,
setting as the name of the input file, a file that doesn't
exist. See what happens!

Hello World Refined Example

¨ This example will introduce you to some of the
fundamentals of Kettle:
¤ Jobs
¤ Job Entries and Hops
¤ Input parameters
¤ Setting variables
¤ Conditions and branches
¤ Executing Jobs from a terminal window with the

Kitchen tool.

Overview

¨ These are the improvements that you'll make to
your existing Transformation:
¤ You won't look for the input file in the same folder,

but in a new one, a folder independent to that
where the Transformations are saved.
n The name of the input file won't be fixed; the

Transformation will receive it as a parameter.
¤ You will validate the existence of the input file.

n The name the output file will be dependent of the name
of the input file.

The improvements

¨ Here's what happens:
¤ Get the parameter
¤ Check if the parameter is null; if it is, abort
¤ Check if the file exists; if not, abort
¤ Create the output file with greetings

Job

¨ This will be accomplished via a Job, which is a component
made by Job Entries linked by Hops.
¤ These Entries and Hops are arranged according the expected

order of execution. Therefore it is said that a Job is flow-control
oriented.

¨ A Job Entry is a unit of execution inside a Job.
¤ Each Job Entry is designed to accomplish a specific function,

ranging from verifying the existence of a table to sending an email.
¨ From a Job it is possible to execute a Transformation or

another Job, that is, Jobs and Transformations are also Job
Entries.

¨ A Hop is a graphical representation that identifies the sequence
of execution between two Job Entries.
¤ Even when a Hop has only one origin and one destination, a

particular Job Entry can be reached by more than a Hop, and more
than a Hop can leave any particular Job Entry.

The process

¨ This is the process:
1. Getting the parameter will be resolved by a new

Transformation.
2. The parameter will be verified through the result

of the new Transformation, qualified by the
conditional execution of the next Steps.

3. The file's existence will be verified by a Job Entry.
4. Executing the main task of the Job will be made

by a variation of the Transformation you made in
the first Hello World example.

Graphically

Preparing the Environment

¨ The input and output files will be in a new folder
called Files.
¤ Copy the list.csv file to this new directory.

¨ Create a variable containing this information. To
do this, edit the kettle.properties configuration
file.

¨ Put this line at the end of the file, changing the
path to the one specific to the Files directory you
just created:

FILES=<File_Path>/Files
¨ Restart Spoon.

Todo

¨ Now you are ready to start.
¨ This process involves three stages:

1. Create the Transformation
2. Modify the Transformation
3. Build the Job

Creating the Transformation

1. Create a new Transformation
get_file_name the same way
you did before.

2. Drag the following Steps to the
workspace, name them, and link
them according to the diagram:

¨ Get System Info (Input category)
¨ Filter Rows (Flow category)
¨ Abort (Flow category)
¨ Set Variable (Job category)

Configuring the Get System Info

¨ This Step captures information from sources outside
the Transformation, like the system date or
parameters entered in the command line.
¤ We will use the Step to get the first and only parameter.
¤ The configuration window of this Step has a grid. In this

grid, each row you fill will become a new column
containing system data.

¨ Double-click the Step.
¨ In the first cell, below the Name column, write

my_file.
¨ When you click the cell below Type, a window will

show up with the available options.
¤ Select command line argument 1.

¨ Click OK.

Configuring the Filter Rows

¨ This Step divides the output in two, based upon a
condition. Those rows for which the condition evaluates to
true follow one path in the diagram, the others follow
another.

¨ Double-click the Step.
¨ Write the condition: In Field select my_file and replace

the = with IS NULL.
¨ In the drop-down list next to Send 'true' data to Step,

select Abort.
¨ In the drop-down list next to Send 'false' data to Step,

select Set Variable.
¨ Click OK.
¨ Now a NULL parameter will reach the Abort Step, and a

NOT NULL parameter will reach the Set Variable Step.

Configuring the Abort

¨ You don't have anything to configure in this Step.
If a row of data reaches this Step, the
Transformation aborts, then fails, and you will use
that result in the main Job.

Configuring the "Set Variable"

¨ This Step allows you to create variables and put
the content of some of the input fields into them.
¤ The configuration window of the Step has a grid.
¤ Each row in this grid is meant to hold a new

variable.
¨ Now you'll create a new variable to use later:

1. Double-click the Step.
2. Click Get Fields. The only existing field will

appear: my_file. The default variable name is the
name of the selected field in upper case: MY_FILE.
Leave the default intact.

3. Click OK.

Execution

¨ To test the Transformation, click Run.
¨ Within the run dialog, you will find a grid titled

"Arguments" on the bottom left.
¤ Delete whatever arguments are already inside, and instead

type list as the first argument value. This will be transferred
to the transformation as the command line argument.

¨ Click Launch.
¨ In the Logging pane, you'll see a message like this:

¤ Set Variables.0 - Set variable MY_FILE to value [list]
¨ Click Run again, and clear the value of the first argument.

This time, when you hit Launch you'll see this:
¤ Abort.0 - Row nr 1 causing abort : []
¤ Abort.0 - Aborting after having seen 1 rows.

Modifying the Transformation

¨ Now it's time to modify the Hello transformation in order to
match the names of the files to their corresponding
parameters.

¨ If the command line argument to the job would be bd2,
this transformation should read the file bd2.csv and
create the file bd2_with_greetings.xml.
¤ It would also be helpful to add a filter to discard the empty

rows in the input file.
¨ Open the Transformation Hello.ktr.
¨ Open the CSV File Input Step configuration window.
¨ Delete the content of the Filename text box, and

press Ctrl-Spacebar to see the list of existing variables.
You should see the FILES variable you added to
kettle.properties. The text becomes:

${FILES}/${MY_FILE}.csv

Modifying the Transformation (2)

¨ Open the XML Output Step configuration
window.

¨ Replace the content of the Filename text box
with this:

${FILES}/${MY_FILE}_with_greetings
¨ Click Show Filename(s) to view the projected

XML filename.

Modifying the Transformation (3)

¨ Drag a Filter Rows step into the transformation.
¨ Drag the Filter Rows step onto the Hop that leaving CSV

Input and reaching Modified Javascript Script Value.
¤ When the Hop line becomes emphasized (thicker), release the

mouse button.
¤ You have now linked the new step to the sequence of existent

steps.
¨ Select name for the Field, and IS NOT NULL for the

comparator.
¨ Leave Send 'true' data to Step and Send 'false' data to

Step blank.
¤ This makes it so only the rows that fulfill the condition (rows with

non-null names) follow to the next Step. This is similar to an earlier
Step.

¨ Click OK.
¨ Click Save As and name this Transformation

Hello_with_parameters.

Graphically

Executing the Transformation

¨ To test the changes you made, you need to make sure
that the variable MY_FILE exists and has a value.
¤ Because this Transformation is independent of the

Transformation that creates the variable, in order to execute
it, you'll have to create the variable manually.

¨ In the Edit menu, click Set Environment Variables.
¤ A list of variables will appear.
¤ At the bottom of the list, type in MY_FILE as the variable

name; as the content, type the name of the file (i.e., list)
without its extension.

¨ Click OK.
¨ Click Run.
¨ In the list of variables, you'll see the one you just created.

Click Launch to execute the Transformation.
¨ Lastly, verify the existence and content of the output file.

Building the main job

¨ Create the Job:
1. Click New, then Job.
2. The Job workspace, where you can drop Job

Entries and Hops, will come up.
3. Click Job, then Settings.
4. A window in which you can specify some Job

properties will come up.
n Type in a name and a description.

5. Click Save. Save the Job in the Tutorial folder,
under the name Hello.

Building the main job (2)

¨ Build the skeleton of the Job with Job Entries and
Hops:
1. Drag the following steps into the workspace:

one General->Start step, two General-
>Transformation steps, and one File
Exists step.

2. Link them in the following order: Start,
Transformation, File Exists, Transformation.

3. Drag two General->Abort steps to the
workspace. Link one of them to the
first Transformation step and the other to
the File Exists step.

n The newly created hops will turn red.

Configure the Steps

¨ Double click the first Transformation step. The
configuration window will come up.

¨ In the Transformation filename field, type the
following:
${Internal.Job.Filename.Directory}/get_file_name.ktr

¨ This will work if transformations and jobs reside in
the same folder.

¨ Click OK.

Configure the second Transformation

¨ Double-click the entry. The configuration window
will come up.

¨ Type the name of the other Transformation in
the Transformation Filename field:
${Internal.Job.Filename.Directory}/Hello_with_param

eter.ktr

¨ Click OK.

Configure the File Exists

¨ Double-click the entry to bring up the
configuration window.

¨ Put the complete path of the file whose existence
you want to verify in the Filename field.

¨ The name is the same that you wrote in the
modified Transformation Hello:

${FILES}/${MY_FILE}.csv

Configure the Abort steps

¨ Configure the first Abort step:
¤ In the Message textbox write:

n The file name argument is missing.

¨ Configure the second Abort step:
¤ In the Message textbox write this text:

n The file ${FILES}/${MY_FILE}.csv does not exist.

¨ Note: In runtime, the tool will replace the variable
names by its values. If you place your mouse pointer
over the Message textbox, Spoon will display a tooltip
showing projected output.

Configuring the Hops

¨ A Job Entry can be executed unconditionally (it's
executed always), when the previous Job Entry was
successful, and when the previous Job Entry failed.

¨ This execution is represented by different colors in
the Hops:
¤ a black Hop indicates that the following Job Entry is

always executed;
¤ a green Hop indicates that the following Job Entry is

executed only if the previous Job Entry was successful;
¤ a red Hop indicates that the following Job Entry is

executed only if the previous Job Entry failed.

Configuring the Hops (2)

¨ The Steps will execute as you need:
¤ The first Transformation entry will be always executed.
¤ If the Transformation that gets the parameter doesn't

find a parameter, (that is, the Transformation failed), the
control goes through the red Hop towards the
Abort Job entry.

¤ If the Transformation is successful, the control goes
through the green Hop towards the File Exists entry.

¤ If the file doesn't exist the control goes through the red
Hop, towards the second Abort Job entry.

¤ If the verification is successful, the control goes through
the green Hop towards the main Transformation entry.

Configuring the Hops (3)

¨ If you wanted to change the condition for the
execution of a Job Entry, the steps to follow would
be:
¤ Select the Hop that reached this Job Entry.
¤ Right click to bring up a context menu.
¤ Click Evaluation, then one of the three available

conditions.

How it works

¨ When you execute a Job, the execution is tied to the
order of the Job Entries, the direction of the Hops,
and the condition under which an entry is or not
executed. The execution follows a sequence. The
execution of a Job Entry cannot begin until the
execution of the Job Entries that precede it has
finished.

¨ In real-world situations, a Job can be a solution to
solve problems related to a sequence of tasks in the
Transformations. If you need a part of a
Transformation to finish before another part begins, a
solution could be to divide the Transformation into
two independent Transformations, and execute them
from a Job, one after the other.

Executing the Job

¨ To execute a Job, you first must supply a parameter.
Because the only place where the parameter is used is in
the get_file_name Transformation (after that you only use
the variable where the parameter is saved) write the
parameter as follows:
1. Double-click the get_file_name Transformation Step.
2. The ensuing window has a grid named Arguments. In the

first row type list.
3. Click OK.
4. Click the Run button, or from the title menu select Job-

>Run.
5. A window will appear with general information related with

the execution of the Job.
6. Click Launch.
7. The execution results pane on the bottom should display

the execution results.

Executing the Job (2)

¨ Alternatively, to test the Job directly:
1. Click the Run button, or from the title menu

select Job->Run.
2. Within the run dialog, you will find a grid titled

"Arguments" on the bottom left.
n Type list as the first argument value. This will be

transferred to the transformation as the command line
argument.

3. A window will appear with general information
related with the execution of the Job.

4. Click Launch.

Executing the Job (3)

¨ The new file has been created when you see this
at the end of the log text:

Spoon - Job has ended.
¨ If the input file was list.csv, then the output file

should be list_with_greetings.xml and should
be in the same folder. Find it and check its
content.

¨ Now change the name of the parameter by
replacing it with a nonexistent file name or
deleting the file name and execute the Job again.

Kitchen

¨ Kitchen is the tool used to execute Jobs from a
terminal window. The script is kitchen.bat on
Windows, and kitchen.sh on other platforms, and
you'll find it in the installation folder.

¨ If you execute it, you'll see a description of the
command with a list of the available options.

¨ To execute the Job, try the simplest command:
kitchen /file <Jobs_path>/Hello.kjb <par> /norep

¨ <par> is the parameter that the Job is waiting for.
¤ Remember that the expected parameter is the

name of the input file, without the csv.

Storing transformations and jobs in a repository

¨ The first time you launched Spoon, you chose No
Repository.

¨ PDI offers two methods:
¤ Repository: When you use the repository method

you save jobs and transformations in a repository.
n A repository is a relational database specially designed

for this purpose.
¤ Files: The files method consists of saving jobs and

transformations as regular XML files in the file-
system, with extension kjb and ktr respectively.

Repository/Files

Reading a formatted file

Text file input (content tab)

Text file input (field tab)

Remove columns

Reading multiple files

Sending data to files

Reading XML (countries.xml file)

¨ In the Content tab, select /world/country/language for
Loop XPath.

Filter the rows

¨ Add a Filter rows step with the condition:
isofficial= T.

Text file Input

¨ The ID and country have values only in the first of the
two lines for each country. In order to repeat the
values in the second line use the flag Repeat in the
Fields tab. Set it to Y.

Stream lookup

Stream lookup

Filter rows - Select values

¨ In the Filter rows step, type the condition
language IS NOT NULL.

¨ By using a Select values step, rename the fields
Duet, Country Name and language to Name,
Country, and Language.

Querying a database

Querying a database (2)

Querying a database (3)

Querying a database (4)

Saving into a database

Saving and logging

Saving and logging (2)

Replacing

Adding and removing a costant

Deleting a table

A Basic Mondrian Cube
(dfm à star schema)

The relational db schema
(execute this script in MySQL)

… (this script is not complete)

Building a Star Schema Cube

¨ For each dimension field it is necessary to store
all possible values in a dimension table also
generating an artificial key.

¨ This key should be used to reference the
dimension values in the fact table.

¨ We build the cube using the Kettle ETL tool.
¨ The MySQL DBMS should be active and

accessible.

Kettle transformation

¨ The transformation is going to make use of the
�Combination lookup/update� step from the �Data
Warehouse� section.
¤ It does exactly what is required to fill the dimension tables

and create the artificial keys.
¨ The step is configured with a table, the name of the

artificial key field, and the row stream fields that make up
the dimension.

¨ When a row passes this step the fields are looked up in
the dimension table.
¤ If a match is found, the corresponding key is added to the

row stream.
¤ If there is no match, the step creates a matching entry in the

dimension table and puts the (newly generated)
corresponding key to the row stream.

The trasformation

¨ So whenever a row passes a �Combination lookup/update�
step, it ensures that there is a row with the dimension fields in
the dimension table and puts the corresponding key to the row
stream.
¤ Exactly what is required to build a star schema cube.

¨ The following transformation recreates the cube using the
Excel sheet as input.
¤ It uses dimension tables.
¤ For each dimension table there is a corresponding dimension step

which is responsible for filling it.
¤ At the end of the process the fact table is written.

Combination lookup/update step

¨ The Combination lookup/update, looks in the
dimension table for a record that matches the key
fields you put in the upper grid in the settings
window.
¤ If the combination exists, the step returns the

surrogate key of the found record.
¤ If it doesn't exist, the step generates a new

surrogate key and inserts a row with the key fields
and the generated surrogate key.

¤ In any case, the surrogate key is added to the
output stream.

Combination lookup/update step (2)

Input Excel

Combination Lookup/update

Add sequence

Output table

The Schema File

¨ After storing the cube in a DB, Mondrian must be
informed about the table structure.

¨ The schema file now references a table for each
dimension and specifies the key fields for both sides
of each relation.

… (this script is not complete)

Using JPivot

Installation Tools

¨ You can download the tools from
http://community.pentaho.com

1. Pentaho BI Platform and Server
¤ Stable build of Pentaho BI Server 3.7.0 or higher

2. Schema Workbench
¤ Stable build of Schema Workbench 3.2.1 or

higher

http://community.pentaho.com/

Pentaho BI Platform and Server

¨ biserver-ce
¤ This is the actual Pentaho BI Server (Community

Edition).

¤ Set the variable JAVA_HOME to the JDK
distribution (not to JRE).

¤ Start this server before the other tools.
¤ The server URL is: http://localhost:8080/pentaho

http://localhost:8080/pentaho

Pentaho BI Platform and Server

¨ administration-console (PAC)
¤ This is an administrative service to manage and

configure the actual Pentaho BI Server.
¤ Pentaho Administration Console (PAC) URL:

http://localhost:8099
¤ Login: admin, Password: password
¤ Configure an user and a connection to the MySQL

DBMS.
n The configured user and connection allows the access

to the Mondrian server.

http://localhost:8099/

Database connection

Users and roles (access to the server)

Pentaho Schema Workbench

¨ Pentaho Schema Workbench is distributed as .zip
and .tar.gz archives.

¨ After downloading, you need to unpack the file.
¨ This yields a single directory called

schema-workbench containing all the software.

¨ You need to place any JDBC Driver .jar files that
you may need to connect to the data warehouse
in the drivers directory:
¤ Add the MySQL connector .jar file.

Database connection
(The MySQL DBMS must be active and accessible)

JDBC Explorer

Using the Schema Editor

¨ Schemas are created and edited using the
schema editor.

¨ File à New à Schema to open the schema
editor.

¨ The schema editor has a tree view on the left
side, showing the contents of the schema.
¤ Initially, this will be almost empty, save for the

Schema node, which is the root of the entire
schema.

¨ On the right side, the schema editor has a
workspace where you can edit elements in the
schema.

The XML document

Basic Schema Editing Tasks

¨ The tasks can be summarized as follows:
¤ Creating a schema
¤ Creating cubes
¤ Choosing a fact table
¤ Adding measures
¤ Creating (shared) dimensions
¤ Editing the default hierarchy and choosing a

dimension table
¤ Defining hierarchy levels
¤ Optionally, adding more dimensions
¤ Associating dimensions with cubes

Creating a schema

¨ In the Options menu: please, uncheck the
“Require schema” option to avoid syntactical
errors.

Creating a Cube

¨ name - Specifies the name that will be used in MDX queries to refer
to this cube. This name must be unique within the schema.

¨ caption - Specifies a display name, which will be used by the user
interface to present this cube to the end user.

¨ cache - Controls whether data from the fact table should be cached.
¨ enabled - Controls whether Mondrian should load or ignore the cube.

Errors

¨ A little red X icon can appear to the left of the
schema and cube icons.
¤ The red X icon indicates that there is some error or

misconfiguration at or somewhere beneath that
particular node.

Choosing a Fact Table

¨ The cube node is initially collapsed, and if you expand it, you
will notice it contains a table node.

¨ This table node represents the fact table upon which the cube
is built. In this case, your cube should be based on the
fact_orders table,
¤ which is why you set the table name using the drop-down list box.

Choosing a Fact Table (2)

¨ schema -The identifier of the database schema
that contains the fact table.
¤ When not explicitly specified, the default schema of

the database connection is used.
¨ name - The name of the fact table.

¤ When connected to a database, the property editor
provides a drop-down list box.

¨ alias - This is the table alias that will be used for
this table when generating SQL statements.
¤ It may be useful to specify this in case you want to

debug the SQL statements generated by Mondrian.

Adding Measures

¨ To add measures, first select the cube (or its fact
table) in the tree view.

¨ Then, click the Add Measure button on the toolbar.
¤ The order in which you specify the measures is

significant: implicitly, the first measure in the cube is
considered the default measure.

Adding Measures (2)

¨ name - The identifier that will be used to refer to this
measure in MDX queries. This must be unique within
the cube.

¨ aggregator - The name of the function that is used to
aggregate the measure. The attribute grid offers a
drop-down list box from where you can pick one of
sum, count, min, max, avg, and distinct-count.

¨ column - The name of a column from the cube�s fact
table. When connected to the database, the attribute
editor offers a drop-down list box from which you can
pick the column.

¨ formatString - Here you can specify a string pattern
that specifies how the measure value will be
formatted for display.

Adding Measures (3)

¨ visible - A flag that specifies whether the
measure is displayed to the end user in the user
interface.

¨ datatype - Here you can use a drop-down list box
to choose String, Numeric, Integer, Boolean,
Date, Time, or Timestamp.
¤ When returning data, the specified data type will be

used to return data in the MDX result.
¨ formatter - You can use this attribute to specify a

custom cell formatter.
¨ caption - Specifies the display name that is used

to present this measure in the user interface.

Adding Dimensions

¨ The Mondrian schemas can contain dimensions in
two places:
¤ Inside the cube that ‘‘owns’’ the dimension

n These dimensions are called private dimensions because
they are known only to the cube that contains it and cannot
be used outside the enclosing cube.

¤ Inside the schema itself
n These are shared dimensions and can be associated with

multiple cubes, and/or multiple times with the same cube.

Adding Dimensions (2)

¨ name -
¤ For private dimensions, the name refers to this dimension in MDX

queries.
n The name must be unique among all other dimensions used by the

cube.
¤ For shared dimensions, the name refers to the dimension when

you are associating it with a cube.
n The name must be unique within the schema.

¨ foreignKey - If this is a private dimension, this is the name of a
column from the cube�s fact table that refers to the dimension
table that corresponds to this dimension.

¨ type - If your dimension is time or date related, you should use
TimeDimension. This allows you to use the standard MDX
time and date functions. Otherwise, use StandardDimension.

¨ caption - This is a display name used to present this
dimension to the end user via the user interface.

Adding and Editing Hierarchies and Choosing Dimension
Tables

¨ When you create a dimension, a new hierarchy is
also created.
¤ You can see it when you expand the dimension node.

¨ In addition, a table node must be created beneath the
hierarchy node.
¤ Before you edit the hierarchy node, it is best to

configure the underlying table node.
¤ The table node represents the dimension table that will

deliver the values for the levels of the hierarchy.
¤ The procedure to configure the table is exactly the

same as the procedure for choosing a fact table for a
cube, which was described earlier in this section.

Adding and Editing Hierarchies and Choosing Dimension
Tables (2)

¨ name - The name used in MDX queries to refer to the
hierarchy.
¤ It must be unique within the dimension.

¨ caption - The name that is used to present this
hierarchy to the end user in the user interface.

Adding and Editing Hierarchies and Choosing Dimension
Tables (3)

¨ hasAll - A flag that indicates whether the hierarchy should
have an all level with an all member.
¤ Es: a single member in the top of the hierarchy that

represents all other members. Usually you should leave this
on.

¨ allMemberName - If hasAll is enabled, this specifies the
MDX identifier that is to be used for the all member.

¨ allMemberCaption - If hasAll is enabled, you can use this
to specify the name that will be used to present the all
member to the end user in the user interface.

¨ allLevelName - The name used to refer to the all level in
MDX queries.

¨ defaultMember - The name of the default member. If this
is not specified, then the all member will be used as
default member if the hierarchy has an All member.

Adding and Editing Hierarchies and Choosing Dimension
Tables (4)

¨ primaryKey - Typically, you should use this to
specify the name of the primary key column of
this hierarchy�s dimension table.
¤ To be exact: this is the column name of the

dimension table that is referenced by the rows in
the fact table. This should be a column in this
hierarchy’s dimension table.

Adding Hierarchy Levels

¨ Now that you created the hierarchies, you must
define their levels.

Adding Hierarchy Levels (2)

¨ name - The name that is used to refer to this level in MDX queries.
¨ table - The name of the table that contains the columns where the

dimension data is stored for this level.
¤ When not specified, the hierarchy’s dimension table will be used. This is

the normal situation for star schemas like the one used in this example.
¤ You need to specify a particular table only when dealing with snowflake

schemas.
¨ column - The column that represents the member identifier for this

level. This must correspond to this level�s table (see the table
attribute).

¨ nameColumn - The name of the column that contains the name of
this level.
¤ When not specified, the value of the name property is used. Typically you

should leave this blank.
¨ captionColumn - You can specify which column of the level�s

dimension table should be used to present the members to the end
user.
¤ When not specified, the member identifier will be used.

Adding Hierarchy Levels (3)

¨ ordinalColumn - This attribute can be used to specify which column
defines how the member values should be sorted by default.

¨ type - The data type of the member values. This is used to control if
and how values must be quoted when generating SQL from MDX
queries.

¨ uniqueMembers - A flag indicating whether all the members at this
level have unique values.
¤ This is always true for the first level (not counting the all level) of any

hierarchy.
¨ levelType - If you leave this blank, it will be assumed this is a regular

level, which is the correct value for most dimensions.
¤ Dimensions that were configured to be of the type TimeDimension must

specify one of the predefined types for TimeDimension levels: TimeYears,
TimeQuarters, TimeMonths, TimeWeeks, and TimeDays.

¤ For TimeDimensions, specifying the levelType is a prerequisite for correct
usage of the Mondrian date/time functions such as YTD.

¨ hideMemberIf - This determines in which cases a member should be
hidden. Typically, you can leave this blank, which is equivalent to
setting the value to Never. In this case, the member is always shown.

Example

¨ The levels of the Months hierarchy

¨ The levels of the Weeks hierarchy

Associating Cubes with Shared Dimensions

¨ In Mondrian schemas, the association between a
cube and a shared dimension is called a dimension
usage.

¨ To add a dimension usage, either select the cube and
right-click the cube and choose the Add Dimension
Usage option from the context menu.

Publishing the Cube

¨ You can publish the cube to the Pentaho BI Server.
¨ To invoke the publish dialog, choose File à Publish

from the main menu, and the dialog pops up.
¨ For the URL, specify the web address of the Pentaho

BI Server to which you want to publish the schema.
¤ You must use the publisher password that you specified

in the server’s publisher_config.xml file.
¤ For the username and password, specify the

credentials of the user created or modified with the
administration-console tool.

¨ If the connection succeeds, a dialog appears that
allows you to browse the server�s solution repository.
¤ Choose the appropriate path (or create a new folder).

Publishing the Cube

Publish the schema
(use the database connection)

Example: MDX Query Syntax*

SELECT <member collection> ON COLUMNS,
<member collection> ON ROWS

FROM <cubename>
WHERE <conditions>

SELECT { [Measures].[Store Sales] } ON COLUMNS,
{ [Date].[2002], [Date].[2003] } ON ROWS

FROM Sales
WHERE ([Store].[USA].[CA])

Visualizing Mondrian Cubes with JPivot

¨ The user console (http://localhost:8080/pentaho)
of the Pentaho BI Server offers the possibility to
create an analysis view, which is essentially a
JPivot cross table on top of a Mondrian cube,
wrapped in a Pentaho process action.

¨ To create a new analysis view, click the analysis
view icon on the toolbar or on the initial
workspace page.

http://localhost:8080/pentaho

Creating an analysis view

The default pivot table

The OLAP navigator

Slicing with the OLAP Navigator

Chart

